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ON SPATIALLY HOMOGENEOUS RELATION IN THE 
DOMAIN OF HIGH MOLECULAR VELOCITIES* 

A.A. ABPAMOV 

Asymptotic solutions oftbe.Boltsmann equation are studied for the spatially 
homogeneous relaxation of the distribution function in the domain of fast 
molecules, as well as the evolution of the perturbations in the distribu- 
tion function in &he case of sherical scattering motion /l/. The problem 
was studied in the linear approximation in fZ/, where exact solutions of 
the linearized Boltzmann equation were obtained for a specified form of 
molecular collision cross-sections. 

Let us consider a spatially homogeneous gas composed of molecules, regarded as rigid 
spheres, We shall assume that at the initial instant we specify, on the range (&t. t) of 
velocities, 

F,, > c = (ZkTlm)"', AE = &z~ - &, 4 0 (c2&,) 

a spatially homogeneous perturbation of the distribution function e(e) relative to the 

Maxwell distribution fn = II (n@)-“‘exp (-p/c2), i.e. 1 = j0 + 0. We shall require that the follow- 
ing relation holds: 

f, = mar @(E) = oK+(E,.fj ti) 
(21,. t..) 

and we shall have to explain how this perturbation evolves with time. 
It was shown in /3, 4/ that the integral of elastic collisions J(f,f) exhibits the follow- 

ing asymptotic behaviour at large velocities E>>c: 

J (f, I) = S(f~‘f’-_j~l)~ri;d~r, c- I e, - &I (2) 

since the fast molecules (59-p) collide mainly with the "thermal" molecules moving with veloc- 
ity of order c. 

We find that the collision integral (2) can be simplified for the problem in question. 
We shall denote the thermal molecules by X and the fast molecules by r. When the fast 

and thermal molecules (r,X) collide, we can have the molecules in the following states (F,x), 
(f, 0, (X, F). Analyzing the dynamics of molecular collisions, with the molecules treated as 
rigid spheres, we can show that when e E (&,, gnc) we can neglect, within the range of colli- 
sions (2), the "glancing" (I', X)-(F, X) and "frontal" (r, X) -(X, P) collisions with an error 
of order 0 (c%‘&%), as 5 - 00 . 

Consider the oroddct 

fl'f' -= fwfo E w 6f,’ 
1 i- - 

w+f,' 
f,)’ +f.+1’1. 

(at’ = f’ - f*‘, af,’ = fx’ _ ;;,j 
” 01 1 

Using the estimates &~gO(&,), ?$;<O(&,), and (1) and remembering that when 
collisions of type g-,X)- (r,r) remain, 

~-CO only 
we reduce the collision integral (2) to the form (d 

is the diameter of the molecule) 

*Prikl.Matem.Mekhan.,48,2,327-329,1984 
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I(f,f) =+-[l+W’/E*)], r-‘=ti fo,gdh 
s 

Thus we must solve the following kinetic equation in the limit as i_m: 

provided that 6fII,, = a(E). 
awat = -ark, 6f = f - f. (3) 

We assumed that the temperature and density of the gas appearing in the Maxwell distribu- 
tion function f0 were constant inthe relaxation process. The solution of (3) has the following 
form in the velocity interval &.,&,.): 

61 (E, t) = Q, (El exp (-t!z) (‘t) 
The result obtained can be derived by analyzing the results obtained in /2/. The deriva- 

tion given here and based on obtaining the asymptotic expression for the collision integral 
is much simpler. 

Let US consider the molecules whose interaction potential varies as U= u,,(T~/T)~-~. For 
such molecules the angle of deviation is defined by the dimensionless parameter p =(0/r~)[4(~- 
t) U,i(mgz)l"('-') where b is the aiming parameter. It can be shown that when s= O(i) , the process 
of relaxation in the problem in qeustion is determined by the weak collisions, when the change 
in the energy of the molecule during the collision Ae is either less than, or of the order 
of kT. 

It is for this reason that the asymptotic expression for the collision integral cannot 
be obtained in the form (3), However, in the case of the potentials truncated in p(p ~[O,p,,,~~l. 

Pm.. =CJ (1)) allmolecular collisions are strong (Ae- mE') and the contribution of the "frontal" 
collisions of the type (I+,X)-(X,F) can be neglected with error O(c*&*). As a result, the 
cross-section depends on the relative velocity g according to the formula s = a,/&(.'-') and the 
relaxation time is given, as E _ 00 , by r-1 = pq&'-'/("-') . When 7 is defined in such a manner, 
the asymptotic expression for the collision integral has the form (3). 

It should be noted that, as we have already said, in the case of power potentials weak 
collisions prevail in the limit as s= O(l), E-m. When the relaxation of the perturbation 
lo of the type considered here is determined by strong collisions, the passage to molecules 
regarded as rigid spheres takes place in the limit as E = canstsc,s-w. Assuming that U,= 
O(kT) and using the expression describing the deflection of a moleculebya small angle given 
in /5/, we can show that when the velocity of the molecule is fixed and the parameter s tends 
to infinity, the weak collisions are the decisive collisions for e = ~(c~-%l-') where 5 = b/r,> 

4, i.e. the correspondingrangeofvelocities narrowsrapidlyass increases. Asaresult, when 5 = 
const>)c andas s increases theroleofstrongcollisionsinCreaSeS. The resultsobtainedapplyto the 
caseofamixtureofgases.The asymptotic formulaforthecollisionintegral for faStpartiCleS obtain- 

ed above canbeusedto studytherelaxationof lowintensitybeamsof fastparticlesin area1 gas. 
As was shown in /l/, we can construct a solution for the scattering motion by transform- 

ing the variables from the solution of Boltsmann's equation for the spatially homogeneous 
case. This assertion remains true also for the asymptotically exact SOlUtiOnS. In accord- 
ance with this transformation we must perform the following substitutions in (4): 

t-+(1-+), &--$-(6-f), n-n&d 

this 

The solution exists for tat,. 
Analogous results can also be obtained for molecules with truncated potential. 

The author thanks V.S. Galkin, V.A. Zharov, M.N. Kogan and N.K. Makashev for discussing 

paper. 
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